
CONTROL AND RESOURCE ALLOCATION IN A DATA CENTER

The data center manages numerous resources, including compute servers, database servers,

storage devices, etc., and serves many different customers using multiple large-scale

applications.

The focus here is on the dynamic allocation and management of the compute servers within

the data center, although the general methodology applies to multiple, arbitrary resources.

The high-level architecture of the data center model and

the architecture of the Application Managers, which manage individual applications,

are described, and details are provided on how they enable

the use of utility functions to manage the data center resources.

Data Center Architecture

The data center contains a number of logically separated Application Environments,

each providing a distinct application service using a dedicated, but dynamically

allocated, pool of resources of various types, such as application servers, databases,

or even virtual resources such as logical partitions.

Each Application Environment

has a router to direct workload

to servers

Each Application Environment has a service-level utility function 𝑈(𝑺,𝑫) specifying

the business value of providing a given

level of service to users of the

Application Environment.

The utility function is independent of that of other Application Environments.

All utility functions share a common scale of valuation, such as a common currency.

The utility function may reflect

the payment/penalty terms of

service-level agreements with

customers, and may also

incorporate considerations such

as the value of maintaining the

data center’s reputation for

providing good service.

The utility function for environment i is of the form

𝑈𝑖(𝐒𝑖 ,𝐃𝑖),
where 𝐒𝑖 is the service level space in i and 𝐃𝑖 is the demand space in i.

𝐒𝑖 and 𝐃𝑖 are vectors

that specify values for

multiple user classes.

𝐒𝑖 is particular to i, and can contain any viable service metrics (e.g., response

time, throughput, etc.).

Although such service-level specification of utility will often be most useful,

𝐒𝑖 could possibly directly measure resources assigned to the classes in i.

𝑈𝑖(𝑺𝑖 ,𝑫𝑖)

i

The system goal is to optimize ∑𝑖𝑈𝑖(𝐒𝑖 , 𝐃𝑖) on a continual basis to accommodate

fluctuations in demand.

A distributed two-level architecture is employed to achieve this end.

The distributed architecture is built out of multiple interacting autonomic elements.

Autonomic elements, analogous to software agents, are the basic self-managing

building blocks of autonomic computing systems.

They manage their own behavior and their relationships with other autonomic

elements, through which they provide or consume computational services.

The global optimization task is distributed among autonomic elements in the

two-level structure.

At the lower level, the detailed control and optimization of a fixed amount of

resources within an Application Environment is handled by a resident

Application Manager.

As demand shifts, Application Manager i may find it necessary to adjust

certain control parameters or divert resources from one transaction class to

another in order to keep 𝑈𝑖(𝐒𝑖 , 𝐃𝑖) as optimal as possible, given a fixed

amount 𝐑𝑖 of resources.

𝐑𝑖 is a vector, each component of which indicates the amount of a specific

type of resource that is allocated to Application Manager i.

At the higher level, allocation of resources across different Application

Environments is performed by a global Resource Arbiter.

The Resource Arbiter does not know details of how the individual Application

Managers optimize their utility, nor details of the services provided by the

individual Application Environments.

Instead, an Application Manager, when prompted by its own perceived need for

more resource, or by a query from the Resource Arbiter, sends to the Arbiter a

resource-level utility function 𝑈(𝐑) that specifies the value to the Application

Environment of obtaining each possible level R of resources.

Given the current functions 𝑈𝑖 𝐑𝑖 from the Application Managers, the Resource

Arbiter periodically recomputes the resource allocation 𝐑∗ that maximizes the

global utility ∑𝑖𝑈𝑖(𝐒𝑖 ,𝐃𝑖) = ∑𝑖
 𝑈𝑖 𝐑𝑖 :

𝐑∗=arg max
𝑹

∑𝑖
 𝑈𝑖 𝐑𝑖 such that ∑𝑖𝐑𝑖= 𝐑,

where 𝐑 indicates the total quantities of resources available.

This distributed two-level architecture is preferable to the centralized approach to

global system optimization.

As each application environment is responsible for optimizing its own resource

usage and for expressing its resource needs in a common, comparable form, it

naturally supports the coexistence of multiple application environments that offer

heterogeneous and arbitrarily complex services.

The internal complexities of individual Application Environments, including

representing and modeling a potentially infinite variety of services and systems, are

compressed by the Application Manager into a uniform resource-level utility

function that relates value to resources, all in common units.

It is easy to add, change or remove Application Environments—even different types

of Application Environments—because the Resource Arbiter requires no information

about their internal workings. Any reconfiguration required of other elements is

handled automatically by the system. In contrast, a centralized approach would

require constant updates to the Resource Arbiter.

The two-level architecture also neatly handles the different time scales that are

appropriate to different types of optimization, by treating them independently.

Application Managers adjust control parameters on a time scale of seconds to

respond to changes in demand, while the Resource Arbiter typically operates on a

time scale of minutes, more commensurate with switching delays necessitated by

flushing out the current workload, changing connections, and installing or

uninstalling applications.

There is time to recompute the resource allocation 𝐑∗ that maximizes the global

utility, which is an NP-hard discrete optimization problem that can be solved by

mixed-integer programming.

Application Manager Architecture

To understand how an Application Manager optimizes its utility 𝑈𝑖(𝐒𝑖 , 𝐃𝑖) subject

to fixed resource constraints and computes 𝑈𝑖 𝐑𝑖 from 𝑈𝑖(𝐒𝑖 ,𝐃𝑖), a close look at

its internal architecture is needed.

Since a single Application Manager is considered here, the i subscripts are dropped.

The Application Manager receives a continual stream of measured service 𝐒 and

demand 𝐃 data from the router and servers.

𝐒 = service level

𝐃 = demand

The Data Aggregator aggregates these raw measurements, e.g. by averaging them

over a suitable time window.

The Controller continually adjusts the router and server control parameters 𝐂 in an

effort to optimize the utility in the face of fluctuating demand.

These parameters may specify how workloads from different customer classes are

routed to the servers, as well as any other tunable parameters on the servers (e.g.

buffer sizes, operating system settings, etc.).

𝐂 = control parameters

Composants autogérés

• Surveillance : réception

des données via les capteurs.

• Analyse : obtention d’un

diagnostic.

• Planification : détermination

des actions à prendre.

• Exécution : mise en œuvre

du plan.

Composants autogérés

• Surveillance : réception

des données via les capteurs.

• Analyse : obtention d’un

diagnostic.

• Planification : détermination

des actions à prendre.

• Exécution : mise en œuvre

du plan.

Sensors Effectors

The Application Manager maintains at least three kinds of knowledge:

- the service-level utility function 𝑈(𝐒, 𝐃),
- the current resource level 𝐑𝑡, and

- a model 𝐒(𝐂,𝐑, 𝐃) of system performance.

The Model specifies the vector of service levels that is obtained if the control

parameters are set to 𝐂, the resources allocated to the Application Environment is

𝐑, and the demand is 𝐃. The model yields a vector of expected service attribute

measurements, which could, for example, represent one or more performance

values for each customer class.

The Controller optimizes the utility 𝑈(𝐒,𝐃) subject to fixed resource constraints.

It receives the aggregated demand 𝐃 from the Data Aggregator. When this quantity

changes sufficiently, the Controller recomputes the control parameters 𝐂∗ that

optimize 𝑈(𝐒,𝐃) based on the performance model and current resource level:

𝐂∗= argmax
C

𝑈(𝐒 𝐂,𝐑𝑡 , 𝐃 ,𝐃) and resets the control parameters to 𝐂∗

The Utility Calculator is responsible for computing the resource-level utility

function 𝑈(𝐑) from the service-level utility function U(S,D).

Since shifting resources among different Application Environments may entail substantial

delays, the Application Manager uses a Demand Forecaster to estimate the average

future demand 𝐃′ over an appropriate time window (e.g., up until the next reallocation),

based on the historical observed demand 𝐃 received from the Data Aggregator.

The Demand Forecaster may use time series analysis methods, supplemented by special

knowledge of the typical usage patterns of the application.

The Utility Calculator computes the optimal resource-level utility 𝑈 𝐑 that

could be obtained based on the forecasted demand 𝐃′ .

Given the performance model 𝐒(𝐂,𝐑, 𝐃), and the service-level utility function

U(S,D), the Utility Calculator computes
 𝑈 𝐑 = max

C
𝑈(𝐒 𝐂,𝐑, 𝐃′ , 𝐃′)

for all possible resource levels R.

The Controller computes the control parameters 𝐂∗ that optimize 𝑈(𝐒,𝐃) based on

the performance model and current resource level:

𝐂∗= argmax
C

𝑈(𝐒 𝐂,𝐑𝑡 , 𝐃 ,𝐃) (1)

while the Utility Calculator computes
 𝑈 𝐑 = max

C
𝑈(𝐒 𝐂,𝐑, 𝐃′ ,𝐃′) (2)

for all possible resource levels R.

To compute 𝑈 𝐑 requires repeated computation of (2) using each possible resource

level R, rather than just the current resource level 𝐑𝑡, and with the predicted demand

𝐃′, rather than the current demand 𝐃.

With complex applications, it may be difficult for human developers to determine an

accurate performance model a priori. To address this problem, the Application

Manager can have a Modeler module that employs inference and learning

algorithms to create, update, and revise the performance model based upon joint

observations of (𝐒, 𝐂,𝐑𝑡 , 𝐃).

Example of management with high level policies by one Application Manager

1. Elicit utility function 𝑈(𝐒) expressed in terms of service attributes 𝐒.
𝐒 = 𝑆1, 𝑆2 = [𝑅𝑇, 𝑅𝑃𝑂]

where 𝑅𝑇 = 𝑹esponse Time (in ms)

and 𝑅𝑃𝑂 = Recovery Point Objective, time interval (in hours) specified by the

Business Continuity team to be the longest time the business can allow for without

incurring significant risks or significant loss.

𝑈(𝑅𝑇, 𝑅𝑃𝑂)

𝑈

Response Time

Recovery Point Objective

2. Model how each attribute 𝑆𝑖 depends on controls 𝐂 and observables 𝐃
- Models expressed as 𝐒(𝐂,𝐃)

e.g. 𝑆1 = 𝑅𝑇(routing weights, request rate)

- Models from experiments, learning, theory

3. Transform from service utility 𝑈 to resource utility 𝑈 by substitution

𝑈 𝐒 = 𝑈 𝐒 𝐂,𝐃 = 𝑈(𝐂,𝐃)

 𝑈([cpu, b], 𝜆)
𝜆 = 0.01

 𝑈

cpu

4. Optimize resource utility.

As observable 𝐃 changes, set 𝐂 to values that maximize 𝑈(𝐂,𝐃)
𝐂∗ 𝐃 = argmax

𝐂

 𝑈(𝐂,𝐃)

 𝑈 𝐃 = max
C

 𝑈(𝐂∗ 𝐃 ,𝐃)

 𝑈([cpu, b], 𝜆)

𝑈(𝑅𝑇, 𝑅𝑃𝑂)

Example of resource allocation for several Application Environments

With several Application Environments, need to make resources explicit.

R vector of resource levels.

𝑅𝑖 = number of servers for application environment 𝑖

Example of resource allocation for several Application Environments

WAS : Websphere Application Server

TIO : Tivoli Intelligent Orchestrator

To commercialize

this solution, infuse

agency/autonomicity

gradually into existing

products and

demonstrate value

incrementally at each

step

Utility Functions in Autonomic Systems - Recapitulation

An autonomic computing system must optimize its own behavior in accordance with

high-level guidance from humans, and hence have the capability of self-optimization.

- What form should this guidance take?

- What mechanisms should the system employ to translate this guidance into low-

level actions that achieve the desired optimization objective?

In order to dynamically allocate system resources, the administrators of an autonomic

computing system no longer have to ascribe value to low-level resources or to use

simple standard mappings between resources and quality of service (while in a real

data center mappings from resource to QoS can be arbitrarily complex and application

specific).

Utility functions are used by the administrators to specify utility in high-level business

terms: the service-level attributes that matter to them or their customers, such as end-

to-end response time, latency, throughput, etc.

Utility functions provide the objective function for self-optimization in autonomic

computing systems, by mapping each possible state of an entity (an autonomic

system or component) into a real scalar value:

- the state can be described as a vector of attributes measured directly by or

synthesized from sensor measurements,

- the value may be expressed in any suitable unit (typically a monetary unit),

- the utility function might be specified by a human administrator, derived from a

contract, or derived from another utility function.

Given a utility function, the system or component must use an appropriate

optimization technique in conjunction with a system model to determine the most

valuable feasible state and the means for achieving it.

Typically, these means may include tuning system parameters or reallocating.

Since conditions are constantly changing, the optimization ought to be performed

recurrently.

Utility functions provide a natural and advantageous framework for achieving self-

optimization in distributed autonomic computing systems.

The computing system has a distributed architecture which enables, by means of

utility functions, a collection of autonomic elements to continually optimize the use

of computational resources in a dynamic, heterogeneous environment.

The architecture is a two-level structure of independent autonomic elements that

supports flexibility, modularity, and self-management:

- Individual autonomic elements manage application resource usage to optimize

local service-level utility functions, and

- a global Arbiter allocates resources among application environments based on

resource-level utility functions obtained from the managers of the applications.

The scheme supports multiple heterogeneous services by encapsulating their

differences at a local level and providing a uniform means of communicating resource

needs to a resource arbiter.

The form of communication is a resource-level utility function that is derived locally

from the service-level utility function by optimization algorithms coupled with a model.

This scheme has been used to handle Web-based, fluctuating, transactional workloads

running on a Linux cluster.

Other Self-* Properties

Perspectives - Challenges

