CONTROLAND RESOURCE ALLOCATION INADATACENTER

The data center manages numerous resources, including compute servers, database servers,
storage devices, etc., and serves many different customers using multiple large-scale
applications.

The focus here is on the dynamic allocation and management of the compute servers within
the data center, although the general methodology applies to multiple, arbitrary resources.

The high-level architecture of the data center model and
the architecture of the Application Managers, which manage individual applications,
are described, and details are provided on how they enable
the use of utility functions to manage the data center resources.



Data Center Architecture
The data center contains a number of logically separated Application Environments,

each providing a distinct application service using a dedicated, but dynamically
allocated, pool of resources of various types, such as application servers, databases,
or even virtual resources such as logical partitions.
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Each Application Environment has a service-level utility function U(S, D) specifying
the business value of providing a given
level of service to users of the
Application Environment.

Application ‘ T \
The utility function may reflect Manager U (S, D)
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Application Environment

The utility function is independent of that of other Application Environments.
All utility functions share a common scale of valuation, such as a common currency.



The utility function for environment 1 is of the form
Ui(S;, D),
where S; Is the service level space in 1 and D; is the demand space in i.

Application U—(S D) S; and D; are vectors
Manager that specify values for

multiple user classes.
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S; Is particular to 1, and can contain any viable service metrics (e.g., response
time, throughput, etc.).

Although such service-level specification of utility will often be most useful,
S; could possibly directly measure resources assigned to the classes in |.




The system goal 1s to optimize >';U;(S;, D;) on a continual basis to accommodate
fluctuations In demand.

A distributed two-level architecture Is employed to achieve this end.
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The distributed architecture is built out of multiple interacting autonomic elements.

Resources

Autonomic elements, analogous to software agents, are the basic self-managing
building blocks of autonomic computing systems.

They manage their own behavior and their relationships with other autonomic
elements, through which they provide or consume computational services.



The global optimization task is distributed among autonomic elements in the
two-level structure.

At the lower level, the detailed control and optimization of a fixed amount of
resources within an Application Environment Is handled by a resident
Application Manager.

As demand shifts, Application Manager 1 may find it necessary to adjust
certain control parameters or divert resources from one transaction class to
another in order to keep U;(S;,D;) as optimal as possible, given a fixed
amount R; of resources.

R; Is a vector, each component of which indicates the amount of a specific
type of resource that is allocated to Application Manager I.



At the higher level, allocation of resources across different Application
Environments is performed by a global Resource Arbiter.

The Resource Arbiter does not know details of how the individual Application
Managers optimize their utility, nor details of the services provided by the
Individual Application Environments.

Instead, an Application Manager, when prompted by its own perceived need for
more resource, or by a query from the Resource Arbiter, sends to the Arbiter a
resource-level utility function U(R) that specifies the value to the Application
Environment of obtaining each possible level R of resources.

Given the current functions U;(R;) from the Application Managers, the Resource
Arbiter periodically recomputes the resource allocation R*™ that maximizes the
gIObaI Ut|||ty ZiUi(Si’Di) = ZiUi(Ri):
R*=arg max ¥;U;(R;) such that ¥;R;=R,
R

where R indicates the total quantities of resources available.



This distributed two-level architecture is preferable to the centralized approach to
global system optimization.

As each application environment is responsible for optimizing its own resource
usage and for expressing its resource needs in a common, comparable form, it
naturally supports the coexistence of multiple application environments that offer
heterogeneous and arbitrarily complex services.

The iInternal complexities of individual Application Environments, including
representing and modeling a potentially infinite variety of services and systems, are
compressed by the Application Manager into a uniform resource-level utility
function that relates value to resources, all in common units.

It is easy to add, change or remove Application Environments—even different types
of Application Environments—Dbecause the Resource Arbiter requires no information
about their internal workings. Any reconfiguration required of other elements Is
handled automatically by the system. In contrast, a centralized approach would
require constant updates to the Resource Arbiter.



The two-level architecture also neatly handles the different time scales that are
appropriate to different types of optimization, by treating them independently.

Application Managers adjust control parameters on a time scale of seconds to
respond to changes in demand, while the Resource Arbiter typically operates on a
time scale of minutes, more commensurate with switching delays necessitated by
flushing out the current workload, changing connections, and installing or
uninstalling applications.

There is time to recompute the resource allocation R* that maximizes the global
utility, which is an NP-hard discrete optimization problem that can be solved by
mixed-integer programming.



Application Manager Architecture
To understand how an Application Manager optimizes its utility U;(S;, D;) subject
to fixed resource constraints and computes U;(R;) from U;(S;,D;), a close look at

Its internal architecture i1s needed.

Since a single Application Manager Is considered here, the I subscripts are dropped.
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The Application Manager receives a continual stream of measured service S and

demand D data from the router and servers.
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The Data Aggregator aggregates these raw measurements, e.g. by averaging them
over a suitable time window.
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The Controller continually adjusts the router and server control parameters C in an
effort to optimize the utility in the face of fluctuating demand.
These parameters may specify how workloads from different customer classes are

routed to the servers, as well as any other tunable parameters on the servers (e.g.
buffer sizes, operating system settings, etc.).




Composants autogéres

e Surveillance : réception
des donnees via les capteurs.

 Analyse : obtention d’un
diagnostic.

 Planification : détermination
des actions a prendre.

e Exécution : mise en ccuvre
du plan.

An Autonomic Element




Composants autogéres

e Surveillance : réception
des donnees via les capteurs.

 Analyse : obtention d’un
diagnostic.

 Planification : détermination
des actions a prendre.

e Exécution : mise en ccuvre
du plan.

Autonomic manager

Managed element

The Application Manager maintains at least three kinds of knowledge:
- the service-level utility function U(S, D),

- the current resource level R, and

- amodel S(C,R, D) of system performance.
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The Model specifies the vector of service levels that is obtained if the control
parameters are set to C, the resources allocated to the Application Environment is
R, and the demand is D. The model vyields a vector of expected service attribute
measurements, which could, for example, represent one or more performance

values for each customer class.
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The Controller optimizes the utility U (S, D) subject to fixed resource constraints.
It receives the aggregated demand D from the Data Aggregator. When this quantity
changes sufficiently, the Controller recomputes the control parameters C* that
optimize U(S, D) based on the performance model and current resource level:
C'=argmaxU(S(C,R;,D),D) and resets the control parameters to C*
C
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The Utility Calculator is responsible for computing the resource-level utility
function U(R) from the service-level utility function U(S,D).
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Since shifting resources among different Application Environments may entail substantial
delays, the Application Manager uses a Demand Forecaster to estimate the average
future demand D’ over an appropriate time window (e.g., up until the next reallocation),
based on the historical observed demand D received from the Data Aggregator.

The Demand Forecaster may use time series analysis methods, supplemented by special
knowledge of the typical usage patterns of the application.




Resource
Arbiter

ﬁplcation Environment

UR)

~

Servers

o

»

Application Manager
' ——
D Utility
Demand — US. D)
Forecaster Calculator I
A
A
P Controller —
> C
S, D
Data "_"
Aggregator —»| Modeler S(C,R,D)
A A
S.D
Router |¢—
S, D

/

The Utility Calculator computes the optimal resource-level utility U(R) that
could be obtained based on the forecasted demand D’ .

Given the performance model S(C, R, D), and the service-level utility function
U(S,D), the Utility Calculator computes

U(R) = max U(S(C,R, D"), D)
for all possible resource levels R.



The Controller computes the control parameters C* that optimize U (S, D) based on
the performance model and current resource level:
C*=argmaxU(S(C,R;, D), D) (1)
C

while the Utility Calculator computes
U(R) = max U(S(C,R, D"),D") (2)

for all possible resource levels R.

To compute U(R) requires repeated computation of (2) using each possible resource
level R, rather than just the current resource level R;, and with the predicted demand
D’, rather than the current demand D.

With complex applications, it may be difficult for human developers to determine an
accurate performance model a priori. To address this problem, the Application
Manager can have a Modeler module that employs inference and learning
algorithms to create, update, and revise the performance model based upon joint
observations of (S, C,R;, D).
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2. Model how each attribute S; depends on controls C and observables D
- Models expressed as S(C, D)
e.g. S; = RT(routing weights, request rate)
- Models from experiments, learning, theory

3. Transform from service utility U to resource utility U by substitution
U(S) = U(S(C,D)) = U(C,D)

A=0.01

7 cpu




4. Optimize resource utility. B
As observable D changes, set C to values that maximize U(C, D)
C*(D) =argmaxU(C,D)
C

U(D) = max U(C*(D),D)

U(RT’ RPO) g Even if service-level utility
remains fixed, resource-
RPO level utility depends upon

environment.

Thus system responds to
environmental changes.

b*=2.053 |
cpu*=8.58 |
U*=759 |
RT*=88.69)

b*=1.199
. Cpu*=3.65 |
b U*=1374
L RT*=9544 |

b*=0.875 |
cpu*=2.49 |
RNN=1527 |
cpu

cpu° cpu




Example of resource allocation for several Application Environments
With several Application Environments, need to make resources explicit.

R vector of resource levels.
R; = number of servers for application environment i

Maximize

Demand Demand
(HTTP req/sec) E’et\?ész‘ (HTTP reg/sec)
T 5 sec —
Trade3 Trdde3
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Example of resource allocation for several Application Environments

WAS : Websphere Application Server
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WAS XD Utility Function Combination
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How App Mgr computes its external resource utility

Alternative to generating

. . Resource
full curve: utility elicitation e
Patrascu, Boutilier et al. New
Approaches to Optimization and | I_ e — i —————
Utility Elicitation in Autonomic | . Elicit: U(RT) Service-level utility
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How the Arbiter determines optimal resource allocation
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Resource Utility Functions

T1O : Tivoli Intelligent Orchestrator
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Approach 1: Performance Modeling using Queuing Theory

= Application estimates how extra/less resource would affect performance
~ Apply an appropriate queuing model (e.g. M/M/k); estimate its parameters

» Use model to predict new steady-state if amount of resource changes

Resource
Arbiter

“You get 5 servers”

Application
Manager
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Approach 2: Local Reinforcement Learner in each Application Manager

Resource |
Arbiter ; j—'

Resource VD(R')_F?I

Response
Time

Application Environment

RL learns by observation how Value depends
on Demand and Resource (# servers)

Learns /ong-range expected value function
V(state, action) = V(D, R)

Several theoretical and practical issues
» Will learning converge?
— Multiple learners
— Non-Markov
~ Is learning fast enough?

» Exploration penalties
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App Mgr can use reinforcement

learning (RL) to compute external
resource utility

— State = A demand
— Action =n # servers
— Reward = V(RT) SLA payment

It learns /long-range value function
V(state, action) = V(A, n)

It reports V(n) for current or
predicted value of A



RL Works!

Results of overnight training (~25k RL updates = 16 hours
real time) with random initial condition
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Resource Allocation Results
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Utility-based Interactions between WXD and TI1O: Step 1

Resource Allocations: n

T1O 3.1
WebSphere Objective Policy
XD 5.1 Analyzer Transfor Engine

Resource Resource Resource
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= T|O cannot make well-founded resource allocation decisions
= WS XD can’t articulate its needs to TIO
= PoB not commensurate with utility



Utility-based Interactions between WXD and TIO: Step 2

Resource Allocations: n

T10 3.1
WebSphere Objective Policy
XD 6.0.2 Analyzer Transform Engine
i 1\ |

Resource -
Fithess(n
Utility(n) PoB(n) (n)

b) Intermediate (commercially available)
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= WS XD research team added ResourceUltil interface of WXD

= We developed a good heuristic for converting ResourceUtil to PoB in Objective Analyzer
=|nterpolate discrete set of ResourceUtil points and map to PoB
= This PoB better reflects WS XD’ s needs




Utility-based Interactions between WXD and TIO: Step 3

Resource Allocations: n

v T10 3.2
WebSphere Objective ’ Polipy
XD 6.0.2 Analyzer Engine
. Resource Resource Resource
Utility(n) Utility(n) Utility(n)

c) Experimental
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Utility(current n) 4 it 1 0 Transform Lol
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We modified TIO to use ResourceUtil(n) directly instead of PoB(n)

Most mathematically principled basis for TIO allocation decisions

It enables TIO to be in perfect synch with the goals defined by WS XD
Basic scheme can work, not just for XD, but for any other entity that
may be requesting resource, provided that it can estimate its own utilities
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we needed an
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approach.




Utility Functions in Autonomic Systems - Recapitulation

An autonomic computing system must optimize its own behavior in accordance with
high-level guidance from humans, and hence have the capability of self-optimization.

- What form should this guidance take?
- What mechanisms should the system employ to translate this guidance into low-
level actions that achieve the desired optimization objective?

In order to dynamically allocate system resources, the administrators of an autonomic
computing system no longer have to ascribe value to low-level resources or to use
simple standard mappings between resources and quality of service (while in a real
data center mappings from resource to QoS can be arbitrarily complex and application
specific).

Utility functions are used by the administrators to specify utility in high-level business
terms: the service-level attributes that matter to them or their customers, such as end-
to-end response time, latency, throughput, etc.



Utility functions provide the objective function for self-optimization in autonomic

computing systems, by mapping each possible state of an entity (an autonomic

system or component) into a real scalar value:

- the state can be described as a vector of attributes measured directly by or
synthesized from sensor measurements,

- the value may be expressed in any suitable unit (typically a monetary unit),

- the utility function might be specified by a human administrator, derived from a
contract, or derived from another utility function.

Given a utility function, the system or component must use an appropriate
optimization technique in conjunction with a system model to determine the most
valuable feasible state and the means for achieving it.

Typically, these means may include tuning system parameters or reallocating.

Since conditions are constantly changing, the optimization ought to be performed
recurrently.



Utility functions provide a natural and advantageous framework for achieving self-
optimization in distributed autonomic computing systems.

The computing system has a distributed architecture which enables, by means of
utility functions, a collection of autonomic elements to continually optimize the use
of computational resources in a dynamic, heterogeneous environment.

The architecture is a two-level structure of independent autonomic elements that

supports flexibility, modularity, and self-management:

- Individual autonomic elements manage application resource usage to optimize
local service-level utility functions, and

- a global Arbiter allocates resources among application environments based on
resource-level utility functions obtained from the managers of the applications.



The scheme supports multiple heterogeneous services by encapsulating their
differences at a local level and providing a uniform means of communicating resource

needs to a resource arbiter.
The form of communication is a resource-level utility function that is derived locally
from the service-level utility function by optimization algorithms coupled with a model.

This scheme has been used to handle Web-based, fluctuating, transactional workloads
running on a Linux cluster.



Other Self-* Properties

Multi-agent System Architecture

Performance
Manager

= Autonomic elements are IT components that:
~ Manage their own low-level behavior in accordance with

— policies, agreements, management relationships
~ Establish and honor service agreements with other elements

= System-level autonomic behavior arises from:
~ Interactions (service-oriented, agent-oriented)

— Founded on Web Services, Grid Services
~ System integration components (registries, sentinels, ...)

~ System design patterns

Storage

= Interactions and agreements are, in general: Database avat
ystem

~ Dynamic, flexible in pattern




Goal-Driven Self-Assembly

A Design Pattern for Self-Configuration in Autonomic Systems

Registry Application Server
Here’'s a list
e ab
Oy Sf‘:’fag
: sten,
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9 list
Database
. The application server needs a database
. The database needs a storage system
. The components to be used were never specified

Storage System
. There was no central plan



Self-Healing Clusters
A Design Pattern for Self-Healing in Autonomic Systems

Sentinel

thafeyou there?

. Multiple instances of service S are clustered

Service S,

« Their state is mirrored for consistency
« A sentinel monitors their availability

. If an instance goes down ...

L]

The sentinel notifies the application manager

The application manager arranges for a new instance of S

The new instance is integrated into the cluster

L]

... and the sentinel begins monitoring it

Service S,
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Service S,




Perspectives - Challenges

Challenge: Learning Establish theoretical foundation for understanding and
Generic AE+AS technologies performing learning and optimization in multi-agent systems.

= Single element level
~ AE needs to learn a model of itself and environment quickly

~ Deal with noisy, dynamic environments
~ On-line, so exploration of parameter space can be costly and/or harmful

~ Cope with several dozens to hundreds of tunable parameters

= System level
~ Multi-agent system: several interacting learners

~ What are good learning algorithms for cooperative, competitive systems?

— What are conditions for stability?
— What is sensitivity to perturbations?



Challenge: Architecture Define set of fundamental architectural
AE+AS architectures principles from which self-* emerges

AE level: Coordinate multiple threads of activity
~ AE’s live in complex environments
~ Multiple task instances and types
— Concurrent, asynchronous
» Multiple interacting expert modules

~ Conflict resolution

System level: Enable more flexible, service-
oriented patterns of interaction

~ How decentralized can/should we make it?
~ Multi-agent architecture

— Representing and reasoning about needs,
capabilities, dependencies

Autonomic Manager

v Ennwledgeﬁ

Managed Element

An Autonomic Element



Challenge: Negotiation

Generic AS technologies, AS science

= Develop and analyze

~ Methods for expressing or computing
preferences

~ Negotiation protocols

~ Negotiation algorithms

= Establish theoretical foundation for
negotiation

~ Explore conditions under which to apply

— Bilateral
— Multi-lateral (mediated, or not)
— Supply-chain
~ Study how system behavior depends on

mixture of negotiation algorithms in AE
population

Performance
Manager

Database

Storage
System

Server



Challenge: Control and Harness Emergent Behavior
AS science

= Understand, control, exploit emergent behavior in autonomic systems
~ How do self-*, stability, etc. depend on
— Behaviors and goals of the autonomic elements

— Pattern and type of interactions among AEs
— External influences and demands on system

~ Invert relationship to attain desired global behavior
— How?
— Are there fundamental limits?

= Develop theory of interacting feedback loops
» Hierarchical

~ Distributed



Challenge: Policy and Human-System Studies
Human interface

Human interface
~ How do/could sysadmins work; what do they need

~ Authoring and understanding policies
~ “What-if” analyses

~ Avoiding or ameliorating specification errors ‘Avg RT < 200 msec” \

‘IF (workload > 10/sec) THEN (Add CPU)"

~ lterative elicitation of preferences, tradeoffs

Universal representation and grammar
~ Many different application domains, disciplines

~ Connections among rules, goals, utility functions?

Algorithms that operate upon policies
~ Derive lower-level policies from high-level policies

~ Derive actions from goals (e.g. planning, optimization)

Conflict detection, resolution
~ Both design time and run time

~ Protocols, interfaces, algorithms



